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Abstract 

Inspired by the alternating orientations of cellular membranes, we describe a structure of nested 

membranes that are colored in two alternating tones. We investigate a class of reactions that 

maintain the colored regions largely invariant at each step (bitonal reactions). These coloring 

constraints guide us towards a small and non-obvious set of basic reactions that are both realistic 

and complete. They are realistic because bitonality is related to an independent notion of locality, 

and because similar reactions are implemented by molecular machinery. They are complete 

because any bitonal reaction can be obtained from them. Such a set of reactions can then be used 

as the basis for descriptions of biological processes, and in particular for the description of 

transport networks in cellular biology.   

 

1  Introduction 

In molecular cell biology ([1][2]), interactions between membranes are by nature local patch 

interactions: that is, they result from the interactions of embedded membrane proteins that can 

inspect only local conditions of relatively small membrane patches. For modeling purposes, 

though, it is preferable to base discussions on whole-membrane interactions that transform 

membranes in certain global ways, such as merging and splitting. Such interactions are part of 

the standard terminology of cellular biology, e.g. endocytosis (Figure 1). 

 

 

 

 

 

 

Figure 1 Endocytosis: whole-membrane view (top), and patch view (bottom) 

When modeling systems at a global level, two basic questions arise: (1) Are the chosen 

whole-membrane interactions justifiable by patch interactions? (2) Are all the possible patch 

interactions modeled by the chosen collection of whole-membrane interactions? 

A positive answer to the first question is a matter of choosing our whole-membrane 

interactions sensibly and realistically: they should be based on observed interactions. The 

second question is also important, and it is not just as a matter of expressiveness: it too is a 

matter of realism. If (2) has a negative answer, then it means that there are interactions that 

are effectively forbidden, but such that the local patch interaction mechanisms cannot “know” 
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that they are forbidden. An example of this situation is given in Figure 2, where if we allow 

the first interaction, then we should also allow the second one, because they have the same 

patch view.  

 

 

 

 

 

 

 

Figure 2 Two membrane interactions with the same patch view 

In this paper we aim to justify certain collections of membrane interaction that are 

standard in biological descriptions, showing that they are both sound and complete with 

respect to realistic patch interaction. Collections of membrane interaction form the basis for 

further work [4], where the level of abstraction is raised, and the patch reactions are forgotten. 

We base our discussions on a simple geometric model built around curves and 

transformations on the Cartesian plane, ~
2
.  

2  Membranes 

2.1  Membrane Systems 

Biological membranes are by nature smooth surfaces. We work in two dimensions, for 

simplicity (although this is a very significant simplification, as we partially discuss later). We 

define a membrane as a curve in ~
2
 that is closed, non-self-intersecting, and smooth. A 

membrane system is a collection of membranes such that no two membranes intersect (Figure 

3). 

Any membrane divides the plane into a bounded inside connected region and an 

unbounded outside connected region (Jordan’s Curve Theorem). Since membranes do not 

intersect, each membrane is either inside or outside any other membrane.  

  

 

  

 

 

 

Figure 3 Legal membrane systems (left) 

2.1–1  Definition (Membrane Systems) 

A curve, c, is a continuous map in [0,1]→~
2
, from the closed interval [0,1] ⊆ ~. We often 

identify a curve c with its range rng(c). 
 

A membrane, m, is a curve that is simple (that is, injective in the open interval (0,1), hence 

non-self-intersecting and with a non-empty interior), closed (having m(0)=m(1)), and 

smooth (infinitely differentiable, and with all derivatives coinciding at m(0),m(1)).
1
  

                                                 
1 This strong smoothness condition is used to rule out nowhere differentiable curves and related complications. It 
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A membrane system M is a finite set of membranes {m1, …, mn} whose ranges nowhere 

intersect in ~
2
. 

M 

If we imagine a membrane system as painted on a rubber sheet, then a deformation is 

some stretching of the rubber. Such deformations of the plane are rather subtle mathematical 

constructions but, since we care only about preserving the containment relations of 

membranes, we define deformations simply as transformations of the plane that preserve 

membrane containment relationships.  

Deformations are a class of reactions, where a reaction is any change in a membrane 

system. Certain reactions discussed later are not deformations: they, at least conceptually, 

include intermediate stages where curves become open, intersecting, or not smooth. But any 

reaction for us is as instantaneous operations between legal membrane systems. 

Any membrane system can be colored in two alternating tones, white and blue, starting 

with white in the outermost region. We effectively consider all our membrane systems to be 

colored this way (Figure 4). 

 

  

 

 

 

 

Figure 4 Bitonally colored systems (left) 

This bitonal coloring is based on some biological facts. The coloring is meant to indicate 

that (1) membranes are oriented (each membrane has chemically distinct cytosolic and 

exoplasmic faces, with the cytosolic face either to the inside or to the outside of the membrane 

[1][2]), and (2) the orientation of adjacent membranes alternates ([2], p. 556). The bitonal 

coloring is a convenient pictorial representation of such a structure. Therefore, bitonal 

systems (1) model membrane orientations, which are fundamental in all membrane functions, 

and (2) they further model the basic alternating-orientation structure of cells and their 

organelles. Figure 5 illustrates the connection between tones and orientations: membranes are 

oriented so that the heads of the orientation arrows fall into (e.g.) the blue regions.  

 

 

 

 

 

 

 

Figure 5 Bitonal systems as alternating orientations 

This alternating structure arises naturally from realistic and common membrane 

interactions, some of which became fixed during evolution, and some of which happen 

routinely in cellular transport. Certain processes, such as digestion, must at some point violate 

the bitonal structure. However, these are rather destructive processes, usually localized in 

                                                                                                                                                         
could be weakened, but this is sufficient for the intended application. 
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special organs, and we choose not to model them (at least, not until Section 6). On the other 

hand, many unrealistic membrane interactions violate the bitonal structure, and can thus be 

ruled out. 

Deformations of a membrane system preserve membrane orientations and alternations, 

and hence preserve the bitonal coloring of corresponding regions. Further, other well-behaved 

membrane reactions preserve membrane orientations and alternations, and hence (largely) 

preserve the bitonal coloring of (most) corresponding areas. The exact meaning of “most” is 

the focus of the following section, after a few definitions. 

2.1–2  Definition (Depth and Tonality) 

A connected region of a membrane system M={m1, …, mn} is a region of ~
2
 not separated 

by membranes, that is, a connected region of ~
2
 – (rng(m1)∪ … ∪rng(mn)). 

 

The depth of a point in a membrane system is the number of membranes that have it in 

their interior. The depth of a connected region is the depth of any point in it. The depth of a 

membrane, depthM(m), is the least depth of its interior points.  

The depth map δM B ~
2
→{∪{undefined} of a membrane system M, maps a point in ~

2
 to 

undefined if the point is on a membrane in M, otherwise to its depth in M. 
 

A tone or tonality is a member of the set {white,blue}, with co-tonality defined as white
I
 @ 

blue, and blue
I
 @ white. 

 

The tone of a point, connected region, or membrane is white iff its depth is even. The tone 

of a membrane is indicated by toneM(m). 

The tone map τM B ~
2
→{white,blue,undefined} maps a point in ~

2
 to undefined if the 

point is on a membrane in M, otherwise to its tonality in M. 

M 

2.1–3 Definition (Reactions, Deformations, and Transformations) 

A reaction is a pair of membrane systems <M,M’>: the one before the reaction, M, and the 

one after the reaction, M’.  
 

A deformation is a reaction <M,M’> with a one-to-one correspondence d between the 

membranes of M and of M’ that preserves the inside/outside relationship of any two 

membranes. 
 

The composition of two reactions <M,M’> and <M’,M”> is the reaction <M,M”>. A 

transformation is a finite composition of reactions. 

M 

Any given membrane system can be produced by composing the following operators, 

plus one deformation: 

2.1–4  Definition (Operations on Membrane Systems) 

{} is the empty membrane system. 
 

If M is a membrane system, then hMi is the system unit(M)∪{unitcircle}, where unit(M) 

is a canonical deformation of the plane to the interior of the unit circle. 
 

If M and M’ are membrane systems, then MmM’ is the system lft(M)∪rht(M’), where lft is 

a canonical deformation into one half of the Cartesian plane, and rht(M’) is a deformation 

into the other half. 

M 
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2.2  Bitonal Reactions 

Much of our discussion will be about bitonal reactions. A bitonal reaction is one that modifies 

the tones of a system “only slightly”, for an appropriate definition. Membrane systems on 

which we perform bitonal reactions are called bitonal systems (which is really a short for 

bitonally transformed membrane systems). 

We define a bitonal reaction as a reaction that changes the tonality of at most a simply-

connected region of the plane: that is, of a connected region with no holes, and hence of a 

region not separated by membranes. The intuition is that a realistic reaction cannot change the 

tonality of a large number of subsystems. Remember that changing tonality means changing 

orientation, and we would not want a simple reaction to turn a large number of membranes 

inside-out. 

For example, creating an empty membrane is a bitonal reaction, and so is deleting an 

empty membrane. In those cases, only one simply-connected region changes tone; namely, the 

interior of those empty membranes. Instead, creating two nested membranes at once is not a 

bitonal reaction, because it changes the tone of a region that contains a hole. Two nested 

membranes can be created by two bitonal reactions in sequence, hence bitonal reactions do 

not compose. But we shall define bitonal transformations as sequences of bitonal reactions, 

and those do compose. Layered reactions, similarly preserve depth rather than tonality. 

2.2–1  Definition (Layered and Bitonal Reactions) 

A layered reaction is any reaction <M,M’> such that the set of points that are not on any 

membrane of M or M’ and that change depth are simply-connected. More precisely, the set 

of points r for which both depth maps δM and δM’ are defined, and for which δM(r) ≠ δM’(r), 

form a simply-connected region of ~
2
. 

 

A bitonal reaction is any reaction <M,M’> such that the set of points that are not on any 

membrane of M or M’ and that change tone are simply-connected. More precisely, the set 

of points r for which both tone maps τM and τM’ are defined, and for which τM(r) ≠ τM’(r), 

form a simply-connected region of ~
2
. 

M 

Each membrane system has a single unbounded region, which by definition has always depth 

0 and tone white; hence the simply-connected regions in Definition 2.2–1 are bounded. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Layered and bitonal reactions 
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Obviously, a layered reaction is a bitonal reaction, but not vice versa. In Figure 6 we 

show some example reactions that we revisit later. For the bitonal reactions Mito and Exo, the 

tone-changing region is simply-connected. For Wrap, which wraps a membrane around an 

existing one, we have instead (at least) two disconnected tone-changing regions, separated by 

a membrane. Note that Wrap, in general, inverts all the tones of an arbitrary subsystem. 

A layered deformation is a deformation that is also a layered reaction; similarly for a 

bitonal deformation, but note that a deformation is layered iff it is bitonal. 

The requirement that tone-changing regions are connected makes them intuitively local. 

But the no-holes assumption is also important; note that if we change the ”simply-connected” 

requirement in the definition of bitonality to ”connected” then a bitonal reaction could for 

example create a double layer around and between two whole subsystems: this would not 

have a local flavor.  

2.2–2  Definition (Layered and Bitonal Transformations) 

A layered transformation is the composition of a finite sequence of layered reactions. 

A bitonal transformation is the composition of a finite sequence of bitonal reactions. 

M 

2.2–3  Proposition 

Any deformation of a membrane system can be obtained as a finite sequence of layered 

deformations.  

Proof 

A single empty circular membrane can be translated by two layered deformations (stretching 

and shrinking) to a “far” unoccupied region of the plane. This can be extended to translating a 

set of empty circles without any complex interference between them, and then to translating 

any hierarchy of circles proceeding outside-in. Assume <M,M’> is a deformation. Starting at 

the innermost levels of M, deform each membrane into a circle, after turning into circles and 

possibly regrouping by translation its contained membranes. Then translate the whole 

structure to a “far” location disjoint from M’. By a reverse process, that structure can then be 

deformed into M’, all the while preserving the depth-preserving bijection between M and M’. 

M 

2.2–4  Corollary 

A transformation is a layered (resp. bitonal) transformation iff its pre- and post-

composition with deformations is a layered (resp. bitonal) transformation. 

M 

2.3  Three Patch Reactions 

We now consider three membrane reactions that are obviously local, since their activity is 

limited to a connected region containing up to two patches and no extra curves. These are 

depicted in Figure 7, where Froth/Fizz are inverse operations that create and delete empty 

membranes, and Switch is a self-inverse operation (up to deformation) that switches patches 

on two membranes. The dotted circles are the interaction discs: regions assumed to be free of 

any other curves. Note that Froth and Fizz can be obtained from Switch if there is any other 

membrane in the system both before and after. This is one reason we consider Froth/Fizz as 

patch reactions, even though they create/delete (“small”) whole membranes. 

Let us define Switch more precisely by geometric constructions. A membrane patch is a 

segment of a membrane delimited by two points. We say that two membrane patches within a 
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system are contiguous if by deformation of their system they can be placed in the switch 

configuration (Figure 7, top left). The configuration is defined as follows, modulo scale. The 

tangents at points A,B,C,D are at 45 degrees, and divide the interaction disc ABCD into four 

quarters. The point E is in the center, with the segment AC entirely in the left quarter, and the 

segment BD entirely in the right quarter. There must be no other curves inside the disc 

ABCD, either before or after the reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Patch reactions 

2.3–1  Definition (Patch Reactions and Transformations) 

A Switch is any reaction <M,M’> that replaces two patches AC and BD of a switch 

configuration, as in Figure 7, by two patches AB and CD; it otherwise does not change M. 

(That is, the range of all the curves of M in ~
2
 differs from the range of all the curves of M’

 

only as indicated.) 

Froth is a reaction that adds a circular membrane containing no membranes. 

Fizz is a reaction that removes a circular membrane containing no membranes. 
 

A transformation of membrane systems is a patch transformation iff it can be realized by a 

finite sequence of patch reactions (one of Switch/Froth/Fizz) and deformations. 

M 

A sequence consisting of a deformation, a Switch, and another deformation, is also often 

informally called a Switch; but in formal arguments we stick to the more restrictive definition; 

similarly for the other reactions. 

2.3–2  Proposition (Patch Reactions) 

A Switch reaction on a membrane system produces a membrane system; similarly for 

Froth and Fizz. 

Proof 

In Switch, all curves remain closed (no loose ends are introduced), smooth (by construction), 

and simple (assuming there are no intersections to start with, Switch does not introduce new 

intersections). Fizz obviously produces a membrane system. Froth also produces a membrane 

system because the new curve is by definition a membrane, and it does not intersect any 

existing membranes. 

M 

It is obvious that Froth and Fizz are bitonal (and layered) reactions. More interestingly: 

A B
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E
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2.3–3  Proposition (Any Switch is a Bitonal Reaction) 

Suppose we apply a Switch reaction to a membrane system. Then, the only points that 

change tonality, and that do not belong to curves, are found in a simply-connected region 

inside the interaction disc. 

Proof 

Consider the switch configuration of Figure 7, where the disc ABCD is free of any other 

curves. We analyze the possible connectivity outside the interaction disc. 

Suppose c(AC) (the curve containing the points A and C) and c(BD) are separate curves 

and are not inside each other; then, since they are contiguous, they are sibling curves of the 

same depth. A Switch then preserves the (depth and) tonality of all points outside of the 

interaction disc. (Outside the disc, each point inside c(AC) and c(BD) remains inside the same 

number d of membranes; each point immediately outside them preserves its depth d-1; and so 

on.) Inside the interaction disc, the only points not on membranes that change (depth and) 

tonality are within the 4-pointed star ABCD, which is a simply-connected region since by 

assumption no membranes cross it.  

Suppose c(AC) and c(BD) are separate curves and c(AB) is inside c(BD). In this situation 

Switch decreases the depth of the points inside c(AB) by 2, and hence maintains their tonality. 

All the other points maintain their depth except in the interacting region, as above; similarly, 

if c(BD) is inside c(AC). 

Suppose that c(ABCD) is a single curve. If E is inside the curve, then Switch preserves 

the (depth and) tonality of all the points outside of the interaction disc, and again the only 

points changing tonality are within the 4-pointed star ABCD. If E is outside the curve, then 

there are two symmetric cases in which, after Switch, the curve c(AB) is found inside c(CD) 

or vice versa; with the depth of the points inside the inner curve increasing by 2, and hence 

preserving tonality, and only the points in the 4-pointed star ABCD changing tonality.  

M 

Note that Switch is not always a layered reaction (see Exo in Figure 6). 

2.3–4  Proposition (All Bitonal Reactions from Switch, Froth and Fizz) 

Any bitonal reaction can be implemented by a finite sequence of Switch, Froth, and Fizz 

reactions, plus deformations. 

Proof 

Suppose <M,M’> is a bitonal reaction. Then, tonality changes only in a bounded simply-

connected tone-changing region, whose boundary is determined by a finite number of 

membranes in either M or M’. By deformation, the (bounded) tone-changing region can be 

placed inside a chosen interaction disc. Moreover, any curve that is not on the boundary of the 

tone-changing region can be pushed out of the interaction disc by deformation.  

Consider the membranes of either M or M’ that now still intersect the (interior of the) 

interaction disc. If there are none, then the tone-changing region is empty, and the reaction is 

the identity, which is obtainable by an empty sequence of deformations.  

If the membranes intersecting the interaction disc are all entirely inside the interaction 

disc, then, to be simply-connected, we must have a single membrane around the whole tone-

changing region. This membrane can come either from M, in which case we have a Fizz 

reaction, or from M’, in which case we have a Froth reaction. (The membrane cannot be in 

both M and M’ because it would not cause tone changes.)  

Otherwise, some membrane crosses the boundary of the interaction disc. But then, they 

must all cross the boundary, or the tone-changing region would not be simply-connected. So, 
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we are left to consider a number of membranes, all on the boundary of the tone-changing 

region, and all crossing the boundary of the interaction disc. The rest of the proof is about 

such a bear-skin configuration, in Figure 8 left. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Bear-skin configurations 

We know that the central region r0 changes tone in the reaction, say from white to blue. 

Then, pick any curve c1 on the boundary of r0; the region r1 on the other side of c1 does not 

change tone in the reaction; let us say its color is blue, then c1 belongs to M (otherwise to M’). 

Now pick the next curve c2 along the boundary of r0; it borders a region r2. Since c1 is also on 

the boundary of r2, the tone of r2 must be the opposite of the tone of r1, that is white, and c2 

must belong to M’. Therefore, going around the border of r0, because of the alternation of 

tones of the regions ri, there must be an even number of such regions. Hence, there must be an 

even number of curves ci, alternatively belonging to M and to M’.  

If the number of such curves ci is just 2, then the bitonal reaction is a simple deformation 

of a curve within the interaction disc. If the number of curves ci is 4, then the reaction is a 

Switch (up to deformation). If the number of curves ci is 6 (Figure 8, right), then there are 3 in 

M, and (up to deformation) we can perform a Switch between two of them (two adjacent 

ones, in general) obtaining a membrane system M1. In M1 we can push one of the two 

resulting curves out of the interaction disc, and the remaining transformation from M1 to M’, 

is in the shape of a bear-skin diagram with 4 curves; hence we are back to the previous case. 

Note also that the region we pushed out is colored as in M’. This process works by induction 

for any even number n of curves ci on the boundary of r0, and with (n-2)/2 Switch operations 

we can reproduce the entire bitonal reaction from M to M’. 

M 

Exercise: Draw the membrane reactions resulting from bear-skins with 6 and 8 curves. 
 

Hence we have: 

2.3–5  Theorem (Patch Transformations same as Bitonal Transformations) 

A bitonal transformation can be expressed as a finite sequence of Switch, Froth, and Fizz 

reactions, along with deformations. Conversely, any such finite sequence is a bitonal 

transformation. 

M 

N.B., it is possible to give a wider definition of “local transformation” as one that 

arbitrarily rewires membrane patches within an interaction disc that contains no whole 

membranes. This too can be reduced to Switch, Froth, and Fizz, as shown in Appendix. 
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3  Soundness of Membrane Reactions 

We have so far constructed a model consisting of membrane systems and bitonal reactions, 

with Switch as the basic reaction. This model respects the locality of realistic interactions: 

Switch is inspired by basic membrane fusion activities in cellular membranes, driven by local 

protein bindings (although carried out by still “unknown mechanisms” [1] p. 745). Froth also 

has some justification, since lipids thrown in water spontaneously assemble into closed 

membranes. Froth and Fizz happen continuously at the boundary of a cell membrane (but only 

towards the inside of the cell, so the membrane is not depleted). 

For modeling reasons, however, it is not convenient to say: a Switch happened between 

these two patches. Rather, we usually would like to say: a reaction happened between these 

two membranes. This is consistent with normal descriptions of transport networks in cellular 

biology, with the related terminology of endocytosis, exocytosis, phagocytosis, pinocytosis, 

fusion, fission, budding, etc. A question then is: could such global transformations be 

“cheating” by taking a global view of the system (e.g. global membrane curvature) that they 

should not be allowed to obtain?  

In this section we investigate the soundness of several membrane reactions, showing that 

they can be implemented by patch reactions. In fact, all these reactions are implementable by 

Switch. Note, though, that there are simple membrane operations that are not implementable 

by Switch (and are not bitonal), such as Wrap from Figure 6. 

As a matter of presentation, rather than defining membrane reactions and showing how 

they are implemented, we show how various membrane reactions arise from Switch under 

different circumstances, when “zooming out” of the patch view. 

3.1  Endo, Exo, Mito and Mate. 

Switch is a very versatile reaction, when seen from a distance: different membrane reactions 

arise from it, depending on the global curvature of the membranes involved.  

When Switch is applied to two different membranes, it decreases the cardinality of a 

system. Depending on whether the two membranes are nested or not, it generates two distinct 

reactions of whole membranes, which we call Mate and Exo (Figure 9, right).
2,3

 

 

 

 

 

 

 

Figure 9 Endo, Exo, Mito, Mate resulting from Switch 

When switch is applied to two patches of the same membrane, it increases the cardinality of a 

system. Depending on whether the patches face inside or outside of the membrane, we obtain 

two distinct reactions of whole membranes that we call Mito and Endo (Figure 9, left). 

We could define these membrane reactions in terms of inside/outside relationships in 

membrane systems; but this is a bit tedious. Instead we define them on the basis of the 

                                                 
2
  The reactions in Figure 9 are colored for emphasis. With reversed tonality they are sometimes called co-Mate 

co-Exo, etc., even though they are really the same reactions on membranes. 
3 The differently striped areas in figures indicate different subsystems, i.e., they are used as metavariables. 
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geometric configurations of Figure 10, from which we can also leverage more information 

about the Switch reaction.  

3.1–1  Definition (Endo, Exo, Mito, and Mate Reactions) 

Four configurations of membrane systems are defined as shown in Figure 10, where the 

ABCD discs are Switch configurations (free of any other curves). 

An Endo reaction consists of a Switch reaction on an Endo configuration. (Any other 

curves in the system are preserved.) Similarly for Exo, Mito, and Mate (Figure 11, which is 

just a more geometric version of Figure 9). 

M 

 

 

 

 

 

 

 

 

Figure 10 Configurations 

 

 

 

 

 

 

 

Figure 11 Membrane reactions 

A sequence of a deformation, an Endo, and another deformation, is also often informally 

called an Endo; but in formal arguments we stick to the more restrictive definition; similarly 

for the other reactions. 

3.1–2  Proposition (Soundness) 

The reactions Endo, Exo, Mito, and Mate, are bitonal reactions. 

Proof 

The reactions are bitonal because, by Definitions 3.1–1, and by Proposition 2.3–3, in each 

case only a single connected patch changes tonality inside the Switch interaction region. 

M 

Remark: Bitonal Reactions in 3D. We deal only with membranes in two dimensions; 

extensions to 3D require more sophistication. In 3D, we can say that a positive-curvature 

Switch happens when two 2D membrane patches with positive curvature meet at a point, the 

point widens to a circle, and the membranes become connected through a negative-curvature 

patch (a hole or a channel, depending on interpretation). In the reverse process, a negative-

curvature Switch happens when a negative-curvature patch shrinks to a point and results in 

two disconnected patches with positive curvature. For example, note that there are two 

different 3D-Switch reactions on a sphere: a positive-curvature one that punches a toroidal 
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hole through it (keeping it connected), and a negative-curvature one that splits it into two 

spheres (making it disconnected). In cross section, both situations look like Mito, but are 

distinct in 3D. Similarly, a cross section like Endo may correspond to creating a torus or 

creating nested spheres; the first one by a positive-curvature Switch, and the second one by a 

negative-curvature Switch. Standard biological terminology maps to 3D as follows: Endo and 

Mito are the negative-curvature Switches (they split membranes), Exo and Mate are the 

positive-curvature Switches (they merge membranes). Although the set of patch reactions 

may need refinements in 3D, the notion of bitonal reaction remains essentially unchanged. 

3.2  Pinch and Coat 

We now discuss, as an aside, some derivable bitonal reactions that are common in 

descriptions of cellular dynamics. We consider first two patch-membrane reactions, that is, 

reactions between a whole membrane and a membrane patch. We see how they derive from 

Switch. 

The first patch-membrane reaction is Pinch: a reaction that creates an empty bubble next 

to a membrane patch: 

 

 

 

Figure 12 Pinch 

When zooming out to membrane operations, Pinch induces two reactions that we call 

Drip and Pino (Figure 13). 

 

 

 

 

 

 

Figure 13 Drip and Pino resulting from Pinch 

Pinch is of course derivable from Switch, hence it is bitonal, and so are Drip and Pino: 

 

 

 

 

Figure 14 Pinch resulting from Switch 

We next consider another patch-membrane reaction, and how it derives from Switch. 

Here, a whole membrane crosses a patch, and is tightly coated with another membrane: 

 

 

 

 

Figure 15 Coat 

The following are two global views of Coat, called Phago and Bud; these are really 

special cases of Endo and Mito, respectively: 
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SwitchSwitch
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Figure 16 Phago and Bud resulting from Coat 

Coat can be derived from Switch as follows. Hence, it is a bitonal reaction, along with 

Phago and Bud: 

  

 

 

 

 

Figure 17 Coat resulting from Switch 

 

4  Completeness of Membrane Reactions 

A collection of membrane reactions can be incomplete, obviously, by some measure of 

expressiveness. But more is at risk than just expressiveness. A given membrane reaction, such 

as Exo, is usually described in terms of global structure (for Exo: a membrane inside another 

membrane). Any local mechanism that implements such a reaction, however, could not know 

about global containment relations. As a result, not only that reaction could be an incomplete 

description of the dynamics, but there might be no possible local implementation of that 

reaction alone. 

For example, suppose we allow only Mito and co-Mito as reactions of a membrane 

system. In Figure 18, the first reaction is a Mito situation. The “patch view” of the reaction is 

shown in the circle; this is in fact the patch view of a Switch reaction. Note that the second 

reaction has the same patch view within the circle: Switch could not distinguish between the 

two cases because the two reactions differ only in the global curvature of the membranes. The 

second reaction, however, is not a Mito: it is a co-Mate. Therefore, if we allow Mito reactions 

we must also allow Mate reactions, and vice versa. But this is not enough. 

 

 

 

 

 

 

 

 

Figure 18 Same patch view 
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Suppose now we allow only Mito/Mate and co-Mito/Mate as reactions of membrane 

systems. In Figure 19 the first reaction is a Mito/Mate situation. The “patch view” is again 

shown in the circle, and the second reaction has the same patch view within the circle. The 

second reaction, however, is not a Mito/Mate: it is a co-Endo/Exo. Moreover, Endo/Exo 

reactions are not representable from Mito/Mate because they change the nesting depth of a 

system. Therefore, a membrane system that allows only Mito/Mate reactions is not locally 

implementable (by Switch). 

 

 

 

 

 

 

 

Figure 19 Same patch view 

4.1  Endo/Exo/Froth/Fizz as a Complete Set of Reactions 

We show that Endo/Exo and Froth/Fizz form a complete set of reactions for bitonal systems, 

in the sense that all bitonal transformations can be performed by those reactions together with 

deformations. Due to Propositions 2.3–4 and 2.2–3, we only need to show that every instance 

of Switch is an instance of Endo/Exo, modulo deformations; this is done in two steps. 

4.1–1  Prop (Completeness) 

Every instance of a Switch reaction can be represented by an Endo, Exo, Mito, or Mate 

reaction, together with deformations. 

Proof 

We assume that the point E is on a white region, for simplicity; the other case is symmetric. 

The deformations that we mention below are intended to keep the ABCD circular region fixed 

on the plane. 

 

 

 

 

 

Suppose that c(AC) and c(BD) are sibling curves. Then they can be brought into the Mate 

configuration by an appropriate deformation; in this case Switch performs a Mate.  

Suppose that c(AC) is inside c(BD). Then the curves can be brought into the Exo 

configuration by an appropriate deformation; in this case Switch performs a (co-)Exo. 

Similarly, if c(BD) is inside c(AC). 

Suppose c(ABCD) is a single curve. If E is inside the curve, then the curve can be 

brought into a Mito configuration by an appropriate deformation, and then Switch performs a 

(co-)Mito. If E is outside the curve, then the curve can be brought into one of two rotationally 

symmetric Endo configurations by appropriate deformations; then Switch performs an Endo 

resulting in either c(AB) or c(BD) being inside the other.  

Exo
Endo

(dual)

Mate
Mito
Mate
Mito

A B

C D

E



 

2008-04-30 22:30:28 15

Hence, Endo, Exo, Mito, and Mate are all the reactions necessary to cover the situations 

in which a Switch can be performed. 

M 

Next we show that Endo/Exo are sufficient, by encoding Mito/Mate from them. 

4.1–2  Proposition (Mito/Mate from Endo/Exo) 

The reactions Mito and Mate can be represented by Endo and Exo. 

Proof 

  

 

 

M 

Hence we have: 

4.1–3  Theorem (Membrane Transformations same as Bitonal Transformations) 

A bitonal transformation can be expressed as a finite sequence of Endo, Exo, Froth, and 

Fizz reactions, along with deformations. Conversely, any such finite sequence is a bitonal 

transformation. 

M 

In conclusion, membrane transformations (arising from Endo/Exo/Froth/Fizz) are 

acceptable because they are bitonal transformations, which are patch transformations (arising 

from Switch/Froth/Fizz). Moreover, membrane transformations can express all bitonal 

transformations, which can express all patch transformations. 

5  A Simple Bitonal Calculus 

At this point, having established that certain collections of membrane reactions are 

acceptable, we may introduce a syntactic notation that takes these reactions as basic. Note that 

we do not know how to come up with a syntactic notation that takes patch reactions like 

Switch as basic. 

We adopt the following syntax; any membrane system can be easily written in this form 

by mapping membranes to brackets. By hXi we intend a membrane that surrounds a 

subsystem X. 

 

Membrane System Syntax 
 

 

X ::=      membrane system 

  k      empty system 

  XmX     composition of subsystems 

  hXi    subsystem inside membrane 
 

 

 

Any expression in this syntax denotes some canonically chosen membrane system (e.g., 

by Definition 2.1–4). We then define a relation of structural congruence on expressions, so 

that two canonical systems that are deformable into each other are represented by equivalent 

expressions. We can then say that each expression, up to structural congruence, represents an 

equivalence class of membrane systems, up to deformation. 

Endo
Exo
Endo
Exo Endo

Exo
Endo
Exo

Endo
Exo
Endo
Exo
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Structural Congruence (Deformability) 
  

  

X1mX2 7 X2mX1 

X1m(X2mX3) 7 (X1mX2)mX3 

Xmk 7 X 
 

X 7 X 

X 7 X’ ⇒ X’ 7 X 

X 7 X’, X’ 7 X” ⇒ X 7 X” 

X 7 X’ ⇒ XmX” 7 X’mX” 

X 7 X’ ⇒ hXi 7 hX’i 

 

  

  

 

We next define the core of the reaction relation, X�X’, which is then extended with 

different axioms to obtain different membrane calculi. We write X�X’ for two inverse 

reactions X�X’ and X’�X. 

 

Structural Membrane Reactions 
  

  

X1 � X2 ⇒ X1mX � X2mX 

X1 � X2 ⇒ hX1i � hX2i 

X1 7 X’1 � X’2 7 X2 ⇒ X1 � X2 

 

  

  

 

The Bitonal Calculus is based on the bitonal reactions Froth, Fizz, Endo, and Exo: 

 

Bitonal Calculus 
  

  

k � hki       Froth/Fizz 

XmhYi � hhXimYi   Endo/Exo 

 

  

  

 

As done before geometrically, we can now show by syntactic manipulation that Mito/Mate 

reactions are representable from Endo/Exo. And so of course are the other reactions from 

Section 3.2. Another interesting derivable reaction is Peel/Pad: 

5.1–1  Proposition (Mito/Mate and Peel/Pad from Endo/Exo and Froth/Fizz) 

hXimhX’i � hXmX’i Mito/Mate 

X � hhXii  Peel/Pad 

Proof 

 hXimhX’i � hhhXiimX’i 7 hhkmhXiimX’i  

      � hhkimXmX’i � kmhXmX’i 7 hXmX’i 
 

 X 7 Xmk � Xmhki � hhXimki 7 hhXii 

M 

Conversely, one can take Mito/Mate and Peel/Pad as axioms, and derive Endo/Exo and 

Froth/Fizz. However, Peel/Pad, with its sudden deletion/creation of two nested membranes 

around an arbitrary system, should seem a bit strange as an axiom or a primitive. In fact, it is 

not a bitonal reaction, although it is a bitonal transformation. 
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A simple type system for tonalities can be defined as follows, with types TB{W,B} 

(White and Blue), where W
I
=B and B

I
=W. To make the system non-trivial, we add two 

constants to the syntax: w and b, which have no congruence or reduction rules. Then, w
I
=b 

and b
I
=w, and X

I
 is the system obtained by swapping all w and b in it. 

 

Bitonal Typing 
 

 

       X : T      X’ : T  X : T  

 w : W  b : B  k : T  XmX’ : T  hXi : T
I
  

 

 

5.1–2  Proposition (Duality and Subject Reduction) 

X�X’ ⇒ X
I
�X’

I 

X:T ⇒ X
I
:T

I 

X:T ∧ X7X’ ⇒ X’:T 

X:T ∧ X�X’ ⇒ X’:T 

M 

6  Atonal Systems 

Finally, we consider membrane reactions that violate bitonality. Note that there are no natural 

patch reactions that violate bitonality: an option is a reaction that punches a hole in a 

membrane patch in order to begin deleting the membrane, but this turns the membrane into an 

open curve, and therefore does not produce a legal membrane system (as we have defined 

them). 

Membrane systems equipped with reactions that are not bitonal (atonal reactions) are 

called atonal system, for emphasis. In Figure 20, we have a few possible atonal reactions, 

along with the familiar Froth/Fizz. We take Enter/Exit and Froth/Fizz as basic, although 

another option is to take In/Out and Wrap/Open as basic. Note that In/Out is a special case of 

Enter/Exit, and Froth/Fizz is a special case of Wrap/Open.  

The collection In/Out/Open comes from Ambient Calculus [5], while BioAmbients [3] 

take In/Out/Mate; in both cases Wrap corresponds to creating a new ambient with a given 

content. Enter and Exit are found in process calculi where processes move across locations. 

Therefore, process calculi with locations have so far been based largely on atonal reactions. 

 

 

 

 

 

 

 

 

Figure 20 Atonal reactions (except for Froth/Fizz) 

These reactions can be defined via precise geometric configurations, as we have done 

before; we omit the (arbitrary) details, except to say it is convenient to keep the entire 

membrane system geometrically fixed, except for the rightmost membrane in Enter/Exit and 

In/Out, and the distinguished membrane in Froth/Fizz and Wrap/Open. 

Out
In

Open
Wrap

Out
In

Open
Wrap

Exit
Enter

Fizz
Froth

Exit
Enter
Exit
Enter

Fizz
Froth
Fizz
Froth
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6.1–1 Proposition (Enter/Exit/In/Out/Open/Wrap are not Bitonal Reactions) 

Enter, Exit, In, Out, Open, and Wrap are not (always) bitonal reactions. 

Proof 

By Corollary 2.2–4, we can work up to deformations. For In, we keep the left membrane 

fixed, so its interior points must change depth by 1, and hence tonality, in the reaction. 

Moreover, a neighborhood outside the membrane must also change its depth by 1, and hence 

its tonality. These are then two regions separated by a membrane, and hence are disconnected; 

similarly for Out.  

Enter/Exit have In/Out as special cases, and therefore are not always bitonal. Open is not 

bitonal, unless it removes an empty membrane. Wrap is not bitonal, unless it creates an empty 

membrane. 

M 

6.2  A Simple Atonal Calculus 

We can now define a simple calculus corresponding to atonal systems. We take Enter/Exit 

and the familiar Froth/Fizz as primitives. The Syntax, Structural Congruence, and Structural 

Membrane Reactions are the same as in Section 5, we only need to specify: 

 

Atonal Calculus 
  

  

k � hki      Froth/Fizz 

X1mhX2i � hX1mX2i  Enter/Exit 

 

  

  

 

It is easy to compute the following derivable reactions: 
  

   Wrap/Open   X � hXi 

   In/Out    hX1imhX2i � hhX1imX2i 

   Mito/Mate   hX1imhX2i � hX1mX2i 

   Endo/Exo   X1mhX2i � hhX1imX2i 
 

Note that the equivalent of proposition 5.1–2 fails, e.g., because wmhbi�hwmbi by 

Enter: the atonal calculus does not admit bitonal typing. 

Finally, we show that the bitonal calculus can emulate the atonal calculus, by “double 

walling” all the membranes: 

6.2–1 Definition (Translation of Atonal Calculus to Bitonal Calculus) 

k� @ k  

(X1mX2)
� @ X1

�mX2
� 

hXi� @ hhX�ii 

M 

6.2–2  Proposition 

The Bitonal Calculus can emulate the Atonal Calculus. 

Proof 

First, if X 7 X’ in the atonal calculus, then X� 7 X’� in the bitonal calculus, by an easy 

induction on the derivations. Then we show that if X � X’ in the atonal calculus, then X� � 
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X’� in the bitonal calculus. This is again by easy induction on the derivations, with the 

following calculations for the basic axioms: 

 k� = k � hki � hhkii 7 hhk�ii = hki�. 

 (X1mhX2i)� = X1
�mhhX2

�ii � hhX1
�imhX2

�ii � hhX2
�mX2

�ii = hX1mX2i
� 

M 

In particular, Open, is emulated under this double-walled encoding by Exo plus Fizz, and 

Wrap is emulated by Froth plus Endo. 
 

 hXi 7 hXmki � Xmhki � Xmk 7 X      (Open/Wrap) 

 hXi� = hhX�ii 7 hhX�imki � X�mhki � X�mk 7 X� 
  

7  Conclusions 

We have seen that bitonal transformations, which incrementally, locally, modify tonality, 

characterize both low-level “patch” transformations and high-level “whole-membrane” 

transformations of membrane systems. Thus, a collection of membrane reactions can be 

related to plausible molecular mechanisms, and can be used as the basis for a language or a 

calculus of membrane interactions, for describing biological algorithms. One such calculus is 

investigated in a companion work [4]. 

It is possible to extend our definitions to deal with molecules as well as membranes. 

(Molecules can cross membranes, and hence do not have a fixed tonality.) It is sufficient to 

relax the definition of membrane systems to include points as well as non-intersecting curves. 

Bitonal transformation are then the ones that re-tone a region that is simply-connected up to a 

set of measure zero (the points/molecules). Then, for example, In/Out becomes a bitonal 

reaction when applied to points, and we can correctly model the fact that molecules can cross 

membranes, but membranes cannot cross membranes. 

 

8  Appendix: Local Reactions 

In this Appendix we investigate a plausible general definition of “local transformation” (any 

transformation that happens in a bounded region containing only membrane patches), and we 

show that it coincides with the notion of bitonal transformation. 

8.1–1  Definition (Local Reactions and Transformations) 

A local reaction is any reaction <M,M’> such that all the membrane points that appear in 

only one of the two membrane systems, are found inside a circular region that contains no 

whole membranes except empty ones. 
 

A transformation of membrane systems is a local transformation iff it can be realized by a 

finite sequence of local reactions and deformations 

M 

8.1–2  Proposition (All Local Reactions from Switch/Froth/Fizz) 

Any local reaction can be implemented by a finite sequence of Switch/Froth/Fizz reactions 

and deformations. 

Proof 

Any empty membrane that is created or deleted can be treated as a Froth or Fizz and deformed 

out of the configuration. Therefore, we only need to consider transformations where all the 
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membrane points that differ are found inside a circular region that contains no whole 

membranes. 

By construction, before and after the local reaction there must be the same number of 

crossing points on the border of the interaction disc (otherwise we would have a difference 

outside the disc). These crossing points are connected in pairs, and a local reaction can only 

change the pairings, up to deformation. Moreover, any two such pairs AB and CD of crossing 

points must be “properly bracketed” (not in the cyclic order ACBD or ADBC) to prevent 

intersections. 

If there is only one pair, the reaction is, up to deformation, the identity (the empty 

sequence of reactions). If there are two pairs, the reaction is, up to deformation, either the 

identity or Switch (a third case causes intersection).  

If there are more than two pairs, we first “untangle” the initial configuration as follows. 

We say that a pair is simple if it is contiguous in the cyclic order of crossing points on the 

disc; there is always at least one simple pair, or we would have an intersection. Suppose there 

are two pairs that are simply nested, that is such that one pair is simple, and the other pair is 

nested immediately around it. Then, a Switch (with appropriate deformations) can unnest 

them into two simple pairs. We continue this process until there is no simple nesting left. Now 

we can have a pair that immediately wraps around a number of simple pairs; we do a Switch 

with the leftmost simple pair, say, and we obtain a new simple pair, and a pair that wraps 

around all the other simple pairs (reduced by one). We continue until we obtain a simple 

nesting, and then we eliminate that one as above. We continue until only simple pairs are left. 

By an inverse process, we can “retangle” the interaction disc into the final configuration. 

M 

By Definition 2.2–1, Switch is a local reaction, and so of course are Froth and Fizz. 

Hence we obtain: 

8.1–3  Theorem (Patch Transformation same as Local Transformations) 

A local transformation can be expressed as a finite sequence of Switch, Froth, and Fizz 

reactions, along with deformations. Conversely, any such finite sequence is a local 

transformation. 

M 
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